Author Correction: Trade-offs in using European forests to meet climate objectives (Nature, (2018), 562, 7726, (259-262), 10.1038/s41586-018-0577-1)

Luyssaert S., Marie G., Valade A., Chen Y.-Y., Djomo S.N., Ryder J., Otto J., Naudts K., Lansø A.S., Ghattas J., McGrath M.J. (2019) Author Correction: Trade-offs in using European forests to meet climate objectives (Nature, (2018), 562, 7726, (259-262), 10.1038/s41586-018-0577-1). Nature. 567: 0-0.
Enllaç
Doi: 10.1038/s41586-019-1023-8

Resum:

In this Letter, in “About 75% of this reduction is expected to come from emission reductions and the remaining 25% from land use, land-use change and forestry”, ‘25%’ should read ‘1%’ and '75%' should read '99%'. In the sentence “The carbon-sink-maximizing portfolio has a small negative effect on annual precipitation (−2 mm) and no effect on air temperature (Table 1)” the word ‘precipitation’ was omitted. Denmark was accidentally deleted during the conversion of Fig. 1. The original Letter has been corrected online. © 2019, The Author(s), under exclusive licence to Springer Nature Limited.

Llegeix més

Trade-offs in using European forests to meet climate objectives

Luyssaert S., Marie G., Valade A., Chen Y.-Y., Njakou Djomo S., Ryder J., Otto J., Naudts K., Lansø A.S., Ghattas J., McGrath M.J. (2018) Trade-offs in using European forests to meet climate objectives. Nature. 562: 259-262.
Enllaç
Doi: 10.1038/s41586-018-0577-1

Resum:

The Paris Agreement promotes forest management as a pathway towards halting climate warming through the reduction of carbon dioxide (CO2) emissions1. However, the climate benefits from carbon sequestration through forest management may be reinforced, counteracted or even offset by concurrent management-induced changes in surface albedo, land-surface roughness, emissions of biogenic volatile organic compounds, transpiration and sensible heat flux2–4. Consequently, forest management could offset CO2 emissions without halting global temperature rise. It therefore remains to be confirmed whether commonly proposed sustainable European forest-management portfolios would comply with the Paris Agreement—that is, whether they can reduce the growth rate of atmospheric CO2, reduce the radiative imbalance at the top of the atmosphere, and neither increase the near-surface air temperature nor decrease precipitation by the end of the twenty-first century. Here we show that the portfolio made up of management systems that locally maximize the carbon sink through carbon sequestration, wood use and product and energy substitution reduces the growth rate of atmospheric CO2, but does not meet any of the other criteria. The portfolios that maximize the carbon sink or forest albedo pass only one—different in each case—criterion. Managing the European forests with the objective of reducing near-surface air temperature, on the other hand, will also reduce the atmospheric CO2 growth rate, thus meeting two of the four criteria. Trade-off are thus unavoidable when using European forests to meet climate objectives. Furthermore, our results demonstrate that if present-day forest cover is sustained, the additional climate benefits achieved through forest management would be modest and local, rather than global. On the basis of these findings, we argue that Europe should not rely on forest management to mitigate climate change. The modest climate effects from changes in forest management imply, however, that if adaptation to future climate were to require large-scale changes in species composition and silvicultural systems over Europe5,6, the forests could be adapted to climate change with neither positive nor negative climate effects. © 2018, Springer Nature Limited.

Llegeix més

Carbon costs and benefits of France's biomass energy production targets

Valade A., Luyssaert S., Vallet P., Njakou Djomo S., Jesus Van Der Kellen I., Bellassen V. (2018) Carbon costs and benefits of France's biomass energy production targets. Carbon Balance and Management. 13: 0-0.
Enllaç
Doi: 10.1186/s13021-018-0113-5

Resum:

Background: Concern about climate change has motivated France to reduce its reliance on fossil fuel by setting targets for increased biomass-based renewable energy production. This study quantifies the carbon costs and benefits for the French forestry sector in meeting these targets. A forest growth and harvest simulator was developed for French forests using recent forest inventory data, and the wood-use chain was reconstructed from national wood product statistics. We then projected wood production, bioenergy production, and carbon balance for three realistic intensification scenarios and a business-as-usual scenario. These intensification scenarios targeted either overstocked, harvest-delayed or currently actively managed stands. Results: All three intensification strategies produced 11.6-12.4 million tonnes of oil equivalent per year of wood-based energy by 2026, which corresponds to the target assigned to French wood-energy to meet the EU 2020 renewable energy target. Sustaining this level past 2026 will be challenging, let alone further increasing it. Although energy production targets can be reached, the management intensification required will degrade the near-term carbon balance of the forestry sector, compared to continuing present-day management. Even for the best-performing intensification strategy, i.e., reducing the harvest diameter of actively managed stands, the carbon benefits would only become apparent after 2040. The carbon balance of a strategy putting abandoned forests back into production would only break even by 2055; the carbon balance from increasing thinning in managed but untended stands would not break even within the studied time periods, i.e. 2015-2045 and 2046-2100. Owing to the temporal dynamics in the components of the carbon balance, i.e., the biomass stock in the forest, the carbon stock in wood products, and substitution benefits, the merit order of the examined strategies varies over time. Conclusions: No single solution was found to improve the carbon balance of the forestry sector by 2040 in a way that also met energy targets. We therefore searched for the intensification scenario that produces energy at the lowest carbon cost. Reducing rotation time of actively managed stands is slightly more efficient than targeting harvest-delayed stands, but in both cases, each unit of energy produced has a carbon cost that only turns into a benefit between 2060 and 2080. © 2018 The Author(s).

Llegeix més