Relative brain size and its relation with the associative pallium in birds

Sayol F., Lefebvre L., Sol D. (2016) Relative brain size and its relation with the associative pallium in birds. Brain, Behavior and Evolution. 87: 69-77.
Enllaç
Doi: 10.1159/000444670

Resum:

Despite growing interest in the evolution of enlarged brains, the biological significance of brain size variation remains controversial. Much of the controversy is over the extent to which brain structures have evolved independently of each other (mosaic evolution) or in a coordinated way (concerted evolution). If larger brains have evolved by the increase of different brain regions in different species, it follows that comparisons of the whole brain might be biologically meaningless. Such an argument has been used to criticize comparative attempts to explain the existing variation in whole-brain size among species. Here, we show that pallium areas associated with domain-general cognition represent a large fraction of the entire brain, are disproportionally larger in large-brained birds and accurately predict variation in the whole brain when allometric effects are appropriately accounted for. While this does not question the importance of mosaic evolution, it suggests that examining specialized, small areas of the brain is not very helpful for understanding why some birds have evolved such large brains. Instead, the size of the whole brain reflects consistent variation in associative pallium areas and hence is functionally meaningful for comparative analyses. © 2016 S. Karger AG, Basel.

Llegeix més

Environmental variation and the evolution of large brains in birds

Sayol, F., Maspons, J., Lapiedra, O., Iwaniuk, A.N., Székely, T., Sol, D. (2016) Environmental variation and the evolution of large brains in birds. Nature Communications. 7: 0-0.
Enllaç
Doi: 10.1038/ncomms13971

Resum:

The life-history basis of behavioural innovations

Sol D., Sayol F., Ducatez S., Lefebvre L. (2016) The life-history basis of behavioural innovations. Philosophical Transactions of the Royal Society B: Biological Sciences. 371: 0-0.
Enllaç
Doi: 10.1098/rstb.2015.0187

Resum:

The evolutionary origin of innovativeness remains puzzling because innovating means responding to novel or unusual problems and hence is unlikely to be selected by itself. A plausible alternative is considering innovativeness as a co-opted product of traits that have evolved for other functions yet together predispose individuals to solve problems by adopting novel behaviours. However, this raises the question of why these adaptations should evolve together in an animal. Here, we develop the argument that the adaptations enabling animals to innovate evolve together because they are jointly part of a life-history strategy for coping with environmental changes. In support of this claim, we present comparative evidence showing that in birds, (i) innovative propensity is linked to life histories that prioritize future over current reproduction, (ii) the link is in part explained by differences in brain size, and (iii) innovative propensity and life-history traits may evolve together in generalist species that frequently expose themselves to novel or unusual conditions. Combined with previous evidence, these findings suggest that innovativeness is not a specialized adaptation but more likely part of a broader general adaptive system to cope with changes in the environment. © 2016 The Author(s) Published by the Royal Society. All rights reserved.

Llegeix més